136 research outputs found

    Double tungstate lasers: From bulk toward on-chip integrated waveguide devices

    Get PDF
    It has been recognized that the monoclinic double tungstates KY(WO4)2KY{(WO_4)}_2, KGd(WO4)2KGd{(WO_4)}_2, and KLu(WO4)2KLu{(WO_4)}_2 possess a high potential as rare-earth-ion-doped solid-state laser materials, partly due to the high absorption and emission cross sections of rare-earth ions when doped into these materials. Besides, their high refractive indexes make these materials potentially suitable for applications that require optical gain and high power in integrated optics, with rather high integration density. We review the recent advances in the field of bulk lasers in these materials and present our work toward the demonstration of waveguide lasers and their integration with other optical structures on a chip

    Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO_4)_2: Âľ-Raman study and laser operation

    Get PDF
    We report on the fabrication, µ-Raman characterization, and continuous-wave laser operation of a channel waveguide with a hexagonal optical-lattice-like cladding fabricated in monoclinic Tm:KLu(WO4)2 crystal by femtosecond direct laser writing. µ-Raman spectroscopy indicates preservation of the crystalline quality in the core region and an anisotropic residual stress field. When pumped by a Ti:Sapphire laser at 802 nm, the Tm:KLu(WO4)2 buried channel waveguide laser generated 136 mW at 1843.7 nm with a slope efficiency of 34.2% and a threshold as low as 21 mW, which are the record characteristics for femtosecond-laser-written Tm crystalline waveguide lasers. The variation of the output coupling resulted in discrete wavelength tuning of the laser emission from 1785 to 1862 nm. The propagation losses in the waveguide are ~1.2 ± 0.3 dB/cm.E. K. acknowledges financial support from the Generalitat de Catalunya under grants 2016FI_B00844 and 2017FI_B100158. F.D. acknowledges additional support through the ICREA academia award 2010ICREA-02 for excellence in research. X. M. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 657630. A. R. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Individual Fellowship Grant Agreement No. 747055. P. L. acknowledges financial support from the Government of the Russian Federation (Grant 074-U01) through ITMO Post-Doctoral Fellowship scheme

    Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature

    Get PDF
    Tm:KGd(WO/sub 4/)/sub 2/ is studied as a three-level laser on the /sup 3/F/sub 4/ /spl rarr/ /sup 3/H/sub 6/ transition and a tunable source in the 2-/spl mu/m spectral range, operating at room temperature. An overall tunability extending from 1790 to 2042 nm is achieved with maximum output powers of 400 mW for an absorbed pump power of 1 W. Various doping levels, pump wavelengths and polarization configurations are compared and the advantages of the monoclinic double tungstates over other Tm-hosts are outlined

    Comparative spectroscopic and thermo-optic study of Tm: LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 Îźm

    Get PDF
    We report on a detailed comparative study of the spectroscopic and thermo-optic properties of tetragonal Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals indicating their suitability for highly-efficient microchip lasers diode-pumped at ~791 nm and operating at ~1.91 Οm. An a-cut 8 at.% Tm:LiYF4 micro-laser generated 3.1 W of linearly polarized output at 1904 nm with a slope efficiency of Ρ = 72% and a laser threshold of only 0.24 W. The internal loss for this crystal is as low as 0.0011 cm-1. For 8 at.% Tm:LiGdF4 and 12 at.% Tm:LiLuF4 lasers, the output power reached ~2 W and Ρ was 65% and 52%, respectively. The thermal lens in all Tm:LiLnF4 crystals is weak, positive and low-astigmatic. The potential for the Tm:LiLnF4 lasers to operate beyond ~2 Οm due to a vibronic coupling has been proved. The Tm:LiYF4 vibronic laser generated 375 mW at 2026-2044 nm with Ρ = 31%. The Tm:LiLnF4 crystals are very promising for passively Q-switched microchip lasers
    • …
    corecore